基于docker-cookiercutter创建data-science项目

github地址

1
https://github.com/manifoldai/docker-cookiecutter-data-science

使用方案

1
2
3
4
5
6
7
8
9
10
11
12
<!--安装cookiecutter-->
pip install cookiecutter

<!--创建项目-->
cookiecutter https://github.com/manifoldai/docker-cookiecutter-data-science.git
<!--后续步骤根据提示一步一步来操作即可-->

<!--启动-->
./start.sh

<!--启动pycharm-->
charm .

项目的目录结构解释解释如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
├── LICENSE
├── Dockerfile <- New project Dockerfile that sources from base ML dev image
├── docker-compose.yml <- Docker Compose configuration file
├── docker_clean_all.sh <- Helper script to remove all containers and images from your system
├── start.sh <- Script to run docker compose and any other project specific initialization steps
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.

├── docs <- A default Sphinx project; see sphinx-doc.org for details

├── models <- Trained and serialized models, model predictions, or model summaries

├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.

├── references <- Data dictionaries, manuals, and all other explanatory materials.

├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting

├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`

├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ │ └── make_dataset.py
│ │
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ └── build_features.py
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── predict_model.py
│ │ └── train_model.py
│ │
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py

└── tox.ini <- tox file with settings for running tox; see tox.testrun.org